Oracle database machine x3-2

The Oracle database machine, gets a major makeover. As Larry Ellison phrased it in his Openworld 2012 Keynote, “Thought that the x2-2 was fast ? You Aint seen nothin Yet”.

If you go to http://www.oracle.com/technetwork/server-storage/engineered-systems/exadata/index.html, at the middle of the page, in the section titled “What’s New”, you can see a in depth technical discussion of the changes incorporated in the x3-2.

So without further Ado, let me explain what the changes are, in the x3-2 compared to the x2-2

Hardware Improvements

Faster CPU’s/More Cores.

– The Oracle Database Machine x3-2, uses the Intel Xeon E5-2690 Processors (2.9Ghz). 2 Sockets, 8 cores each, total 16 cores in each database node (The x2-2 had 12 cores per node). These are the Sandy bridge processors (x2-2 had the Intel Xeon westmere processors), which have a new micro architecture, and are extremely fast (Comparable in speed to the IBM Power7 cpu’s).

So now in the full Rack of x3-2, the database machine has 128 CPU Cores (The x2-2 had 96 Cores).

– The CPU’s on the exadata cells have been upgraded to use the Intel Xeon E5-2630L (2.0Ghz) Sandybridge processors. The Cpu’s are 6 cores each.

More Physical Memory (DRAM)

– The Oracle Database Machine x3-2 has 128Gb of DRAM memory per database server. This is expandable to 256Gb of Memory. So in the Full Rack you can have upto 2048Gb (2Tb) of physical memory.

– The physical memory on the x3-2 exadata cells, has been upgraded to have 64Gbytes of Ram.

More 10GigE networking ports

– The 4 Networking ports on the database server, mother board are now 1/10Gbe. They are autosensing,and are copper only. The remaining 2 Network ports are 10Gbe and can be connected via fiber.

More Flash Cache.

– The x3-2 exadata storage servers now use the Sun F40 Flash cards instead of the Sun F20 Flash cards used in the x2-2. Each Card is 400Gb. There are 4 PCI-E Flash cards in each cell. So you have 1600Gbytes of Flash cache in each cell. In a full rack x3-2, you get 22.4Tb of Flash cache (The x2-2 had 5Tb of Flash cache in a full rack).

So what does this increased amount of Flash mean in terms of performance ?

On an x3-2 full rack, you can get
– 1.5 Million datatase read iops from the flash cache.
– 1 Million database write iops from flash cache
– 100Gbytes/sec Flash Cache, scan throughput

New 1/8th Rack

A new configuration (In addition to the Full, Half & Quarter configurations) of a 1/8th Rack has been announced. So customers can now buy a configuration smaller than the quarter rack. It is really a 1/4th rack with half the cpu’s, half the flash cards and half the disks turned off. So the hardware price is lower and the software licensing costs are lower.

The other improvements include lower power consumption and improved cabling and airflow.

One notable change is that, the x3-2 now, does not have a KVM. This leaves 2U at the top of the Rack, where customers can deploy their in home switches, for network connectivity.

The number of disks, the type of disks, the disk capacities and speeds, in the exadata x3-2 cells,remain the same as it was in the x2-2 cells.

Software Improvements

Exadata Smart Flash Cache Write-Back

With the improved write speeds of the new PCI-E flash cards, the flash cache can now used as a write-back cache. This means that as soon as the data is written to flash cache, oracle database considers the write complete (ie it does not have to wait till the data is written to the physical magnetic disk). This helps improve the performance of applications that are currently bottlenecked on database writes.

On the x2-2, the random writes were written to the flash cache too, however it had to be written to disk (Or strictly speaking, to the disk controller cache) before the write was acknowledged by the database as completed. With the write-back cache functionality in x3-2 as soon as the write is persisted in the flash cache the database considers the write as complete. The writes to disk only get done when the ESS software detects that new blocks need to be read from disk to the flash cache and there is no free space in the flash cache. At such times, least frequently used data from the flash cache gets written to physical disk.

The smart flash cache algorithm makes sure that things like backups do not overwrite the entire cache.

The Full Rack x2-2 can do 1 million write iops to flash cache using this new functionality.

Reduced database brownout time during cell failure/removal.

In previous versions of the ESS software there could be upto 8 seconds of brown out time, when a cell failed, which has been now reduced to sub second.

Unbreakable Enterprise Kernel

– The database servers and Exadata storage servers on the x3-2 now use Oracle Unbreakable Enterprise Kernel 1.

The UEK1 was the operating system on the x2-8’s for a while now. With the x3-2’s we now use the UEK Kernel on the x3-2 database and storage server.

DBFS

– DBFS now supported on Solaris and Sparc Super Cluster.

The above list of hardware and software changes are just the highlights, not a complete list.

Exadata smart flash log

The exadata development team has now released the exadata cell software version 11.2.2.4.0, which includes a new feature called the “Smart Flash Log”.

In a nutshell, this new feature speeds up redo log writes. Exadata smart flash log uses Exadata smart flash cache as a temporary storage to provide low latency redo log writes. With this new feature enabled, oracle writes both to physical disk and the flash cache simultaneously.

So if for some reason, flash cache writes are slow, the writes to the physical disk will provide the good response times. Similarly if the physical disk writes are slow, the flash cache writes will complete faster, providing the good response times.

You can use the “Create flash log”, cell command to turn this feature on. You can use the “Drop flash log” cell command to turn this feature off.

The exadata storage server software, users guide, has been updated with this information.

You have to have Bundle patch 11 (Actually it works from BP9 onwards, but BP11 is recommended) and exadata cell software 11.2.2.4.0 applied to get this functionality.

Please read the section “Exadata Smart Flash Logging : Flash for database logging”, in the oracle technical white paper, Exadata smart flash cache features and the Oracle Exadata Database Machine, for details.

Here is a video tutorial produced by Oracle Education on this topic, smart flash log.

Monitoring Exadata database machine with Oracle Enterprise Manager 11g

Oracle Enterprise manager Grid control, is hands down the best monitoring and management tool, for the oracle exadata database machine. It comes with plugins to monitor all the hardware components of the database machine, and sensible, preset thresholds for proactive monitoring.

Update (Nov 2011) : Enterprise manager 12c is now available, and Certified to be used with exadata. The master MOS note 1110675.1 covers the installation and configuration details.

Some key points
  • You should use 11gR1 enterprise manager grid control for monitoring.
  • You should use 11gR1 enterprise manager agents, to monitor the targets on the database machine.
  • If you use enterprise wide monitoring tools like tivoli, openview or netcool, use snmp traps from oracle enterprise manager, to notify these monitoring tools (ie dont try to directly use snmp to monitor the exadata components. You could do this but it will be too time consuming).
  • You could potentially use 10.2.0.5 Oem, with 11g agents to monitor the dbmachine, but this is not recommended as a stable/long term solution.
  • The following components (And more) can be monitored using Enterprise Manager
    • Databases hosts
    • Exadata Cells
    • Cisco switch
    • KVM (Keyboard, Video, Mouse)
    • ILOM Monitoring
    • Infiniband switch
    • Power distribution unit (PDU)
You have 3 possible options to configure enterprise manager
  • If you have an existing 11gR1 enterprise manager grid control envrionment, you can patch it with the recommended patches and use that for monitoring the dbmachine targets.
  • You can setup and configure a brand new 11gR1 enterprise manager grid control environment (On a separate server) and configure it to monitor the dbmachine targets.
    • Download the required software
      • Weblogic server 10.3.2 (MOS Note 1106105.1, 1063112.1)
      • Jdk 64 bit (Mos Note 1063587.1)
      • 11gR1 Oms from download.oracle.com
    • Install Java and Web Logic Server (Wls)
      • MOS Note 1063762.1
    • Patch Web Logic Server
      • MOS Note 1072763.1
    • Install 11gR1 Enterprise manager Oracle Management Server (OMS)
      • Install/Create a 11gR2 database to serve as the Enterprise Manager Repository
      • Database pre-reqs for 11.1.0.1 repository (Mos Note 1064441.1)
      • Install/Configure Oms (Mos Notes 1130958.1, 1059516.1)
    • Patch OMS with the required patches to enable database machine monitoring
      • Mos Note 1323298.1
  • You can use an easy install option to setup and configure an enterprise manager environment and configure the plugins.
    • The easy install is delivered as a  patch 11852882 (EMGC setup automation kit)
    • The configuration worksheet has to be filled out properly (Before the installation) and the em.param file has to be generated.
    • Follow the instructions in the readme to do a quick install of a fully configured 11gR1 Enterprise manager installation.
    • This method helps you install/patch  and configure the full 11gR1 oms in just an few steps and is a huge time saver.
Download the required plugins to monitor the following components
Download the plugins from the enterprise manager extensions exchange
http://www.oracle.com/technetwork/database/exadata/index.html#plug-in (Exadata cell plugin)
http://www.oracle.com/technetwork/oem/grid-control/exadata-plug-in-bundle-188771.html (All the rest of the plugins)
Install and Configure the Agent and the Plugins
       Additional tutorials with screenshots on configuring the plugins can be found below
Sending SNMP traps to 3rd party monitoring tools.
  • Get the Mib (Management Information Base) file from your enterprise manager management server and send it to the 3rd party tool administrator (eg: openview or netcool). Follow MOS note 389585.1, to get this MIB file.
  • Then configure your notification methods and rules to send the required snmp traps to the 3rd party tool.

Oracle Exadata Best Practices Tutorials

There is a set of recorded tutorials available from the oracle maximum availability architecture team, that cover a range of topics.

The tutorials can be accessed at  Oracle Exadata Best Practices Series

The topics include implementing Ebs, Siebel and Peoplesoft, resource manager, migration, DBFS, monitoring, backup and recovery, troubleshooting, patching and healthcheck.

Lots and Lots of great information.